for measuring optical rotation. ]]
Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity. Optical activity occurs only in chiral materials, those lacking microscopic mirror symmetry. Unlike other sources of birefringence which alter a beam's state of polarization, optical activity can be observed in . This can include gases or solutions of chiral molecules such as sugars, molecules with helical secondary structure such as some proteins, and also chiral liquid crystals. It can also be observed in chiral solids such as certain crystals with a rotation between adjacent crystal planes (such as quartz) or metamaterials.
When looking at the source of light, the rotation of the plane of polarization may be either to the right ( dextrorotatory or dextrorotary — d-rotary, represented by (+), clockwise), or to the left ( levorotatory or levorotary — l-rotary, represented by (−), counter-clockwise) depending on which stereoisomer is dominant. For instance, sucrose and camphor are d-rotary whereas cholesterol is l-rotary. For a given substance, the angle by which the polarization of light of a specified wavelength is rotated is proportional to the path length through the material and (for a solution) proportional to its concentration.
Optical activity is measured using a polarized source and polarimeter. This is a tool particularly used in the sugar industry to measure the sugar concentration of syrup, and generally in chemistry to measure the concentration or enantiomer of chiral molecules in solution. Modulation of a liquid crystal's optical activity, viewed between two sheet polarizers, is the principle of operation of liquid-crystal displays (used in most modern televisions and computer monitors).
A chemical compound that causes dextrorotation is dextrorotatory or dextrorotary, while a compound that causes laevorotation is laevorotatory or laevorotary. Compounds with these properties consist of chiral molecules and are said to have optical activity. If a chiral molecule is dextrorotary, its enantiomer (geometric mirror image) will be laevorotary, and vice versa. Enantiomers rotate plane-polarized light the same number of degrees, but in opposite directions.
The prefix used to indicate absolute configuration is not directly related to the (+) or (−) prefix used to indicate optical rotation in the same molecule. For example, nine of the nineteen L- naturally occurring in proteins are, despite the L- prefix, actually dextrorotary (at a wavelength of 589 nm), and D-fructose is sometimes called "levulose" because it is levorotary. The two naming systems can be combined to indicate both absolute configuration and optical rotation, as in D-(+)-glyceraldehyde.
The D- and L- prefixes describe the molecule as a whole, as do the (+) and (−) prefixes for optical rotation. In contrast, the ( R)- and ( S)- prefixes from the Cahn–Ingold–Prelog priority rules characterize the absolute configuration of each specific chiral stereocenter with the molecule, rather than a property of the molecule as a whole. A molecule having exactly one chiral stereocenter (usually an asymmetric carbon atom) can be labeled ( R) or ( S), but a molecule having multiple stereocenters needs more than one label. For example, the essential amino acid Threonine contains two chiral stereocenters and is written (2 S,3 S)-threonine. There is no strict relationship between the R/S, the D/L, and (+)/(−) designations, although some correlations exist. For example, of the naturally occurring amino acids, all are L, and most are ( S). For some molecules the ( R)-enantiomer is the dextrorotary (+) enantiomer, and in other cases it is the levorotary (−) enantiomer. The relationship must be determined on a case-by-case basis with experimental measurements or detailed computer modeling.See, for example,
In 1849, Louis Pasteur resolved a problem concerning the nature of tartaric acid.Pasteur, L. (1850) "Recherches sur les propriétés spécifiques des deux acides qui composent l'acide racémique" (Researches on the specific properties of the two acids that compose the racemic acid), Annales de chimie et de physique, 3rd series, 28 : 56–99; see also appendix, pp. 99–117. A solution of this compound derived from living things (to be specific, wine lees) rotates the plane of polarization of light passing through it, but tartaric acid derived by chemical synthesis has no such effect, even though its reactions are identical and its elemental composition is the same. Pasteur noticed that crystals of this compound come in two asymmetric forms that are mirror images of one another. Sorting the crystals by hand gave two forms of the compound: Solutions of one form rotate polarized light clockwise, while the other form rotate light counterclockwise. An equal mix of the two has no polarizing effect on light. Pasteur deduced that the molecule in question is asymmetric and could exist in two different forms that resemble one another as would left- and right-hand gloves, and that the organic form of the compound consists of purely the one type.
In 1874, Jacobus Henricus van 't Hoffvan 't Hoff, J.H. (1874) "Sur les formules de structure dans l'espace" (On structural formulas in space), Archives Néerlandaises des Sciences Exactes et Naturelles, 9 : 445–454. and Joseph Achille Le BelLe Bel, J.-A. (1874) "Sur les relations qui existent entre les formules atomiques des corps organiques et le pouvoir rotatoire de leurs dissolutions" (On the relations that exist between the atomic formulas of organic substances and the rotatory power of their solutions), Bulletin de la Société Chimique de Paris, 22 : 337–347. independently proposed that this phenomenon of optical activity in carbon compounds could be explained by assuming that the 4 saturated chemical bonds between carbon atoms and their neighbors are directed towards the corners of a regular tetrahedron. If the 4 neighbors are all different, then there are two possible orderings of the neighbors around the tetrahedron, which will be mirror images of each other. This led to a better understanding of the three-dimensional nature of molecules. Note: In accordance with this theory, because there are two asymmetric carbon centers in tartaric acid, there is a third meso form, which has no optical activity. See the tartaric acid article for more.
In 1898, Jagadish Chandra Bose described the ability of twisted artificial structures to rotate the polarization of . In 1914, Karl F. Lindman showed the same effect for an artificial composite consisting of randomly-dispersed left- or right-handed wire Helix in cotton. Since the early 21st century, the development of artificial materials has led to the prediction and realization of chiral metamaterials with optical activity exceeding that of natural media by orders of magnitude in the optical part of the spectrum. Extrinsic chirality associated with oblique illumination of metasurfaces lacking two-fold rotational symmetry has been observed to lead to large linear optical activity in transmission and reflection, as well as nonlinear optical activity exceeding that of lithium iodate by 30 million times.
In 1945, Charles William Bunn predicted optical activity of achiral structures, if the wave's propagation direction and the achiral structure form an experimental arrangement that is different from its mirror image. Such optical activity due to extrinsic chirality was observed in the 1960s in liquid crystals.
In 1950, Sergey Vavilov predicted optical activity that depends on the intensity of light and the effect of nonlinear optical activity was observed in 1979 in lithium iodate crystals.
Optical activity is normally observed for transmitted light. However, in 1988, M. P. Silverman discovered that polarization rotation can also occur for light reflected from chiral substances. Shortly after, it was observed that chiral media can also reflect left-handed and right-handed circularly polarized waves with different efficiencies. These phenomena of specular circular birefringence and specular circular dichroism are jointly known as specular optical activity. Specular optical activity is very weak in natural materials.
In order to display optical activity, a fluid must contain only one, or a preponderance of one, stereoisomer. If two enantiomers are present in equal proportions, then their effects cancel out and no optical activity is observed; this is termed a racemic mixture. But when there is an enantiomeric excess, more of one enantiomer than the other, the cancellation is incomplete and optical activity is observed. Many naturally occurring molecules are present as only one enantiomer (such as many sugars). Chiral molecules produced within the fields of organic chemistry or inorganic chemistry are racemic unless a chiral reagent was employed in the same reaction.
At the fundamental level, polarization rotation in an optically active medium is caused by circular birefringence, and can best be understood in that way. Whereas birefringence in a crystal involves a small difference in the phase velocity of light of two different linear polarizations, circular birefringence implies a small difference in the velocities between right and left-handed circular polarizations. Think of one enantiomer in a solution as a large number of little helices (or screws), all right-handed, but in random orientations. Birefringence of this sort is possible even in a fluid because the handedness of the helices is not dependent on their orientation: even when the direction of one helix is reversed, it still appears right handed. And circularly polarized light itself is chiral: as the wave proceeds in one direction the electric (and magnetic) fields composing it are rotating clockwise (or counterclockwise for the opposite circular polarization), tracing out a right (or left) handed screw pattern in space. In addition to the bulk refractive index which substantially lowers the phase velocity of light in any dielectric (transparent) material compared to the speed of light (in vacuum), there is an additional interaction between the chirality of the wave and the chirality of the molecules. Where their chiralities are the same, there will be a small additional effect on the wave's velocity, but the opposite circular polarization will experience an opposite small effect as its chirality is opposite that of the molecules.
Unlike linear birefringence, however, natural optical rotation (in the absence of a magnetic field) cannot be explained in terms of a local material permittivity tensor (i.e., a charge response that only depends on the local electric field vector), as symmetry considerations forbid this. Rather, circular birefringence only appears when considering nonlocality of the material response, a phenomenon known as spatial dispersion.
The phase velocity of light in a medium is commonly expressed using the index of refraction n, defined as the speed of light (in free space) divided by its speed in the medium. The difference in the refractive indices between the two circular polarizations quantifies the strength of the circular birefringence (polarization rotation),
The familiar rotation of the axis of linear polarization relies on the understanding that a linearly polarized wave can as well be described as the superposition (addition) of a left and right circularly polarized wave in equal proportion. The phase difference between these two waves is dependent on the orientation of the linear polarization which we'll call , and their electric fields have a relative phase difference of which then add to produce linear polarization:
Substituting these expressions for and into the equation for we obtain
\mathbf{E}_{\theta_0} &= \frac{\sqrt{2}}{2} \big(e^{-i\theta_0} \mathbf{E}_\text{RHC} + e^{i\theta_0} \mathbf{E}_\text{LHC}\big) \\ &= \frac{1}{2} \big[\hat{x} \big(e^{-i\theta_0} + e^{i\theta_0}\big) + \hat{y} i \big(e^{-i\theta_0} - e^{i\theta_0}\big)\big] \\ &= \hat{x} \cos\theta_0 + \hat{y} \sin\theta_0.\end{align} The last equation shows that the resulting vector has the x and y components in phase and oriented exactly in the direction, as we had intended, justifying the representation of any linearly polarized state at angle as the superposition of right and left circularly polarized components with a relative phase difference of . Now let us assume transmission through an optically active material which induces an additional phase difference between the right and left circularly polarized waves of . Let us call the result of passing the original wave linearly polarized at angle through this medium. This will apply additional phase factors of and to the right and left circularly polarized components of :
We defined above the difference in the refractive indices for right and left circularly polarized waves of . Considering propagation through a length L in such a material, there will be an additional phase difference induced between them of (as we used above) given by
In general, the refractive index depends on wavelength (see dispersion) and the differential refractive index will also be wavelength dependent. The resulting variation in rotation with the wavelength of the light is called optical rotatory dispersion (ORD). ORD spectra and circular dichroism spectra are related through the Kramers–Kronig relations. Complete knowledge of one spectrum allows the calculation of the other.
So we find that the degree of rotation depends on the color of the light (the yellow sodium D line near 589 nm wavelength is commonly used for measurements) and is directly proportional to the path length through the substance and the amount of circular birefringence of the material which, for a solution, may be computed from the substance's specific rotation and its concentration in solution.
Although optical activity is normally thought of as a property of fluids, particularly aqueous solutions, it has also been observed in crystals such as quartz (SiO2). Although quartz has a substantial linear birefringence, that effect is cancelled when propagation is along the optic axis. In that case, rotation of the plane of polarization is observed due to the relative rotation between crystal planes, thus making the crystal formally chiral as we have defined it above. The rotation of the crystal planes can be right or left-handed, again producing opposite optical activities. On the other hand, amorphous forms of silica such as fused quartz, like a racemic mixture of chiral molecules, has no net optical activity since one or the other crystal structure does not dominate the substance's internal molecular structure.
|
|